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Abstract

New regenerative treatment strategies are being developed for intervertebral disc degeneration of which the implantation of various cell
types is promising. All cell types used so far require in vitro expansion prior to clinical use, as these cells are only limited available.
Adipose-tissue is an abundant, expendable and easily accessible source of mesenchymal stem cells. The use of these cells therefore
eliminates the need for in vitro expansion and subsequently one-step regenerative treatment strategies can be developed. Our group
envisioned, described and evaluated such a one-step procedure for spinal fusion in the goat model. In this review, we summarize the
current status of cell-based treatments for intervertebral disc degeneration and identify the additional research needed before adipose-
derived mesenchymal stem cells can be evaluated in a one-step procedure for regenerative treatment of the intervertebral disc. We
address the selection of stem cells from the stromal vascular fraction, the specific triggers needed for cell differentiation and potential
suitable scaffolds. Although many factors need to be studied in more detail, potential application of a one-step procedure for interver-
tebral disc regeneration seems realistic.
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Introduction
Disorders of the musculoskeletal system are among the most
prevalent and costly medical conditions affecting western soci-
eties [1]. Recent advances in cellular biology and material technol-
ogy, the cornerstones of regenerative medicine, also referred to as
reparative medicine or tissue engineering, are beginning to influ-
ence the clinical practice of different disciplines including
orthopaedic surgery. Regenerative medicine has identified various

skeletal tissues as attractive translational skeletal targets, in par-
ticular bone, cartilage, meniscus and the intervertebral disc [2, 3].
The identification and characterization of matrix constituents and
the increased knowledge about both anabolic and catabolic trig-
gers of musculoskeletal tissues provide important information on
possible targets for therapeutic intervention. However, most of
these concepts have barely progressed from in vitro testing and
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are so detailed that any attempt to summarize them would not do
them justice, and is beyond the scope of this review. Therefore,
this review will focus on a recently discussed type of biologic ther-
apy: stem cell therapy and its role in intervertebral disc regenera-
tion, in particular the use of adult adipose-derived mesenchymal
stem cells.

Degenerative disc disease and 
emerging biological treatment
approaches

The intervertebral discs tightly connect the vertebrae of the spinal
column, providing resistance to compression combined with the
permission of limited movements. The outer part of the interver-
tebral disc (IVD) consists of perpendicularly oriented circumflex
lamellae consisting of primarily collagen type I that cross between
two vertebral bodies. This is called the annulus fibrosus (AF).
These lamellae confine the nucleus pulposus (NP), a gel-like
structure consisting of proteoglycans and water, held together by
a mainly collagen type II network.

IVD degeneration can be described clinically as a loss of
proper stability and mobility, which are the two major roles of the
disc. However, the aetiology and pathophysiology of disc degen-
eration are still largely unknown [4, 5]. From a biomechanical
point of view, disc degeneration can be described as a decrease
in water content associated with proteoglycan diminution of the
nucleus pulposus and inner annulus. This results in flattening of
the disc and eventually destruction of the annular structure [6, 7].
Although the cause of IVD degeneration remains unclear, an
attempt to define IVD degeneration was recently made as follows:
an aberrant, cell-mediated response to progressive structural
 failure [8].

Degenerative disc disease (DDD) applies to degenerated discs
which are also painful [8]. DDD is a highly common muscu-
loskeletal impairment that currently has no identified cause.
However, a strong association exists between increasing age and
progressive degradation [9, 10]. The traditional view during much
of the last century was that DDD was primarily due to physical
(over)loading as well as changes associated with the normal aging
process. In recent years, however, a dramatic advance has been
made in the understanding of risk factors such as age, gender,
genetic, environmental, chemical (smoking), and biomechanical
influences for disc degeneration, thus changing our traditional
views [11–14].

Current treatment options for DDD comprise either pain man-
agement or invasive surgical interventions like vertebral inter-
body fusion or spinal arthroplasty [15]. The expanding compre-
hension of processes involved in DDD and disc repair, however,
present the possibility of developing strategies for restoring disc
tissues. The onset of DDD starts with the loss of proteoglycans in
the NP and therefore several biologic strategies under investiga-

tion aim to restore the proteoglycan level or synthesis within the
degenerated IVD. These strategies include the use of natural and
recombinant proteins, cytokines or growth factors, gene therapy
and cell therapy [16–20].

Growth factors like TGF-� [21–23], BMP-2 [20, 23], BMP-7
(OP-1) [24, 25] or GDF-5 [26, 27] all have shown an anabolic
effect on disc cells, characterized by their ability to increase the
functional properties of IVD cells, such as production of collagen
type II, Sox 9 and aggrecan [28]. Another category of molecules
has a similar effect as the growth factors on disc cells, but exerts
its effect intracellularly, by controlling one or more aspects of
cellular differentiation [20]. Examples of these factors include
LMP-1 [29], Sox 9 [30] and SMADs [31, 32]. Anti-inflammatory
factors, like TIMP-1 [33] and CPA-926 [34], were shown to
reduce degenerative changes by inhibiting naturally present
degradative enzymes like MMP-1 or MMP-3 [33]. The above-
mentioned categories of biologic agents aim to modify the disc-
cell metabolism, while some biologic treatment strategies aim to
increase the number of cells in the disc. Mitogenic molecules for
disc cells include insulin-like growth factor-1 (IGF-1) and epider-
mal growth factor (EGF), which were shown to have positive
effects on the rate of mitosis and proteoglycan production of
disc cells in vivo [27, 28]. All of the mentioned factors showed
preservation of the architecture of disc tissue and/or increase
collagen and proteoglycan synthesis through different mecha-
nisms. However, the success of gene therapy and growth-factor
injection depends on a critical mass of cells within the disc. Cell-
based treatments do not share this requirement and may there-
fore be appropriate for a wide range of disease states of degen-
erative disc disease. Cell therapy is an alternative approach, and
the regenerative effects of transplantation of autologous cells,
such as nucleus pulposus cells [35, 36], annulus fibrosus cells
[37], cartilagenous chondrocytes [38] and mesenchymal stem
cells [39–42] into the IVD, have been demonstrated as well. This
review focuses on the use of mesenchymal stem cells in inter-
vertebral disc regeneration.

Stem cell sources

Stem cells are defined as unspecialized cells capable of long-term
self-renewal and differentiation into more specialized cells. At the
beginning of life, after fertilization of the ovum, a blastocyst is
formed containing totipotent cells, which divide and specialize
into pluripotent, embryonic stem cells [43]. The pluripotent cells
then further specialize into multi-potent stem cells, or progenitor
cells, that commit into lineages with tissue-specific functions like
mesodermal tissue [43]. Cells capable of producing mesenchy-
mal tissues are referred to as mesenchymal stem cells (MSC) and
are capable to differentiate to adipocytic, osteoblastic and chon-
drocytic lineages under appropriate conditions [44]. MSCs have
not only been isolated from embryonic [45] or foetal tissues [46],
but also from almost every organ in adulthood [43]. MSCs from
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adult tissues provide an attractive, alternative source of cells for
tissue engineering, as the use of embryonic stem cells gives rise
to ethical controversy. In addition, adult MSCs are relatively easy
accessible and can be harvested from tissues like bone marrow,
skin, muscle and adipose tissue [2, 44, 47–50]. Currently, bone
marrow is the primary used source of adult MSCs, in which one
of 105 nucleated cells is an MSC [51]. The low number of cells
necessitates in vitro culture expansion to obtain sufficient num-
bers of cells for clinical application [52].

MSCs derived from the stromal vascular fraction (SVF) of adi-
pose tissue were firstly identified by Zuk et al. as a source of adult
MSCs [49]. SVF is a cell mixture isolated from adipose tissue by
collagenase digestion and centrifugal enrichment, harbouring a
population of multi-potent MSCs, so-called adipose-derived stem
cells (ASCs) [50]. SVF is a pool of various cells, including
endothelial cells, smooth muscle cells, pericytes, fibroblasts,
mast cells and pre-adipocytes [53, 54]. The incidence of ASCs in
adipose tissue is estimated to be about 1 per 103 nucleated cells
[50], which is two magnitudes higher than the number of MSCs
in bone marrow [51]. Despite the higher frequency and yield of
ASCs over bone marrow MSCs, the biological properties of ASCs
are not compromised. In culture, ASCs express cell-surface
markers similar to those expressed by bone marrow MSCs,
including CD105, SH3, Stro-1, CD90 and CD44 [44, 48]. After lin-
eage-specific stimulation, ASCs show multiple-lineage differenti-
ation potentials: they can differentiate into adipogenic, myogenic,
chondrogenic, osteogenic, endothelial, cardiomyogenic and
potentially neurogenic, phenotypes [48–50]. As interest of clini-
cians in ASCs increases, several authors have compared ASCs
and MSCs in terms of differentiation capacity [55–57]. MSCs
from bone marrow are reported to provide a more suitable cell
source for osteogenic and chondrogenic differentiation compared
to ASCs [55–57], although no significant differences in terms of
the multi-lineage differentiation capacity between ASCs and BM-
MSCs were found in two other reports [58, 59]. However, MSCs
from different sources respond differently to culture conditions:
for instance, medium containing dexamethasone is necessary for
chondrogenesis in synovium-derived MSCs [60] while the same
medium suppresses chondrogenesis in ASCs [61]. Therefore, the
development of optimized protocols for the differentiation of
MSCs from different tissue sources is crucial for equal compari-
son of their differentiation capacities. The most important fea-
tures of adipose tissue as an MSC source are the relative expend-
ability and easy accessibility. Adipose tissue can be obtained in
substantial quantities with minimal risk, as liposuction is a com-
mon procedure to obtain adipose tissue with zero reported deaths
on 66,570 procedures and a serious adverse event rate of 0.68
per 1000 cases [62]. Adipose tissue is also accessible at most
sites used for a surgical procedure, neutralizing the need for a
separate harvest site and its concomitant morbidity. Thus, ASCs
are a promising source of stem cells for tissue engineering, and
they have enormous clinical potentials as the principle source for
both a one step or a multi-step procedure for tissue regeneration
in general.

Integration of ASC-based 
regenerative medicine and surgery

The ability to harvest and/or procure high quantities of lineage-
specific cells or direct to regeneration-competent progenitor cells
towards the proper phenotype is crucial for orthopaedic tissue
engineering interventions. As bone marrow derived stem cells
must be expanded in vitro, current concepts of tissue engineering
procedures consist of multi-step procedures, including at least an
MSC harvesting step and an MSC re-insertion step after expansion
[63, 64]. Based on the current knowledge of tissue engineering
technology and ASC technology in particular, we formulated an
innovative concept for a one step-procedure for spinal inter-body
fusion [65]. A time frame for this procedure is shown in Figure 1.
The efficacy of this procedure is based on integration of tissue
engineering technology with established surgical interventions
performed with off-the-shelf biomaterials (calcium phosphate-
based scaffold, bioresorbable polymer cage), and retrieval of suf-
ficient quantities of ASCs harvested with minimal invasive tech-
niques within the scope of a single surgical procedure. Previous
research studies focused on the integration of tissue engineering
techniques and a posterior lumbar inter-body fusion (PLIF)
[66–68], a well-established and widely accepted surgical tech-
nique for spinal fusion as a treatment for (severe) intervertebral
disc degeneration [15]. ASCs containing SVF were isolated from
subcutaneous adipose tissue at the surgical site immediately after
skin incision, performed with the digestion and centrifugal enrich-
ment methods as described by Zuk et al. [50]. It could be shown
that sufficient ASCs in SVF can be retrieved from different areas of
the body, enabling various surgical approaches to the spine (e.g.
anterior, lateral and posterior) [53]. Our group showed the feasi-
bility of short-term ex vivo triggering of ASCs in the osteogenic
direction performed with biologics [69] and that ASCs acquired
bone cell-like responsiveness to loading after osteogenic differen-
tiation [70]. Furthermore, in another study we observed vitality
and diffuse, rapid penetration of triggered stem cells on and in a
porous calcium phosphate scaffold [65]. Implantation of a biore-
sorbable cage filled with the triggered stem cell seeded scaffold in
a prepared intervertebral disc completes the procedure. Short-
term in vivo studies in a goat spinal inter-body fusion model
showed cellular retention of fluorescently labelled SVF cells at 4
days after implantation and active bone formation by osteoblasts
and resorption of scaffold material after 28 days [65].

For mildly degenerated discs, a similar concept might be feasi-
ble for ASCs-based transplantation by simple injection in the 
contained structure of the intervertebral disc (see Fig. 1). It is envi-
sioned that retrieval and procurement of the ASCs (Phase I, see
Fig. 1) can be performed in a standardized, similar way for both
regenerative as well as fusion techniques, whereas triggering
and/or carrier seeding of the cells (Phase II and III, see Fig. 1)
must be tailored to the specific aim of the procedure.

However, much is unknown and is currently under investigation
with respect to the need of (rapid) selection of ASCs from SVF, the
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need for chondrogenic or NP-cell triggering of the ASCs and the
need for carrier materials in the regenerative one-step procedure.
Therefore, this review aims to give an overview about current in
vitro and in vivo studies and potentials of MSCs in general in disc
regeneration, pointing to ASC-related studies where possible.

in vitro studies

Cells in the nucleus pulposus share several characteristics with
articular cartilage chondrocytes, for instance both cell types
demonstrate sox9, aggrecan and collagen type II up-regulation
[71, 72]. Many studies have shown that adult MSCs can be
directed into chondrocytes [73, 74]. The ability to isolate, expand
and direct MSCs in vitro to particular lineages provides the oppor-
tunity to study events associated with differentiation. The specific
environmental cues to initiate the proliferation and differentiation
of MSCs in vivo towards NP cells at present are not fully under-
stood yet. For the purpose of disc regeneration by simple injection
of ASCs, it is of particular interest to study the effects of the
microenvironment within NP tissue on the differentiation of MSCs,
as well as the interaction with scaffold materials potentially
involved in disc regeneration.

NP cells and MSCs are likely to interact after injection of MSCs
in the intervertebral disc in our envisioned one step-procedure. Co-
culture systems, both direct and indirect, have been widely used to
investigate the interactions between two different cell types in vitro.
In the direct system, cells communicate through both cell–cell con-
tacts and paracrine mediators, however, in the indirect system cells
communicate only through paracrine mediators. The low density of
NP cells in nucleus tissue, which is only about 4000 cells/per mm3

[75], makes direct cell–cell contact between NP cells and ASCs a
rare incidence when MSCs are injected into NP tissue. Therefore,
the indirect co-culture system is more likely to mimic the in vivo

situation after injection of ASCs for the NP regeneration. MSCs
have been indirectly co-cultured in monolayer with NP cells with
contrasting results: Li et al. found MSCs differentiating towards the
NP-cell-like phenotype [76], but Richardson et al. found that direct
cell contact was necessary to induce the NP-cell-like phenotype
[73]. Regardless of the co-culture system, cell culture configura-
tion is also relevant for chondrogenic differentiation and monolayer
culture is not appropriate for chondrogenic differentiation nor
mimics the 3D in vivo situation [77, 78]. Our group demonstrated
that ASCs cultured as micromasses are able to differentiate
towards NP-cell-like cells by indirect NP-cell co-culture, as deter-
mined with real-time PCR, showing an up-regulation of collagen
type II and aggrecan and concomitant down-regulation of osteo-
pontin, collagen type I and PPAR-� (see Fig. 2) [79].

As IVDs consist primarily of extracellular matrix (ECM),
injected stem cells are likely to interact with the components of the
ECM after injection into the disc. It was shown that ECM plays a
critical role in the regulation of stem cell differentiation into differ-
ent lineages, cell proliferation and cell migration [80–82]. Collagen
type II, the predominant collagen in nucleus pulposus ECM [83, 84],
was shown to maintain the chondrogenic phenotype [85, 86] and
even to induce a chondrogenic phenotype in MSCs [87, 88]. These
processes might be influenced by the capacity of chondrocytes to
bind to collagen type II through �1�1, �2�1 and �10�1 integrins,
resulting in the formation of a signalling complex, which plays a
role in the differentiation, matrix remodelling and cell survival [89].
To investigate ASC behaviour in a collagen type II environment, our
group studied ASCs in collagen type I or II gels, indirectly co-cul-
tured with NP cells. These experiments showed that collagen type II
can act in concert with NP cells on chondrogenic differentiation of
ASCs [90].

Besides interaction between cells and matrix components of
the disc, the interaction with (synthetic) scaffolds might be of
interest and is studied at present as well for the purpose of disc
regeneration. A general roadmap for designing an optimal scaffold

© 2008 The Authors
Journal compilation © 2008 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd 

Fig. 1 Concept of a one-step
surgical procedure. The surgery
starts with harvesting of the adi-
pose tissue, followed by a split
procedure. The surgeon contin-
ues the surgery, whereas the tis-
sue engineer isolates the stem
cell-containing cell population
from the adipose tissue, treat
the cells to induce differentiation
into the proper phenotype, and
seeds the stimulated cells on the
scaffold. The surgeon then
implants the scaffold containing
the stem cells, and finishes the
surgery. The whole procedure
takes approximately two hours.
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with respect to survival, proliferation and differentiation of stems
cells is currently lacking. Apart from the general requirements
such as biocompatibility, recent studies indicate that the material
properties of the scaffold may influence the differentiation poten-
tial of the seeded stem cells [91, 92]. In the context of osteogenic
differentiation, it was suggested that this is due to a selective and
material-related adsorption of serum proteins to the tested scaf-
fold materials [93, 94], which directly affects the differentiation
potential of the attached cells [93]. Recent advances in basic
research on the interaction between stem cells and their physical
environment emphasize that the physical properties of the sub-
strate is of utmost importance in the behaviour of stem cells. It
has been recently shown that the stiffness of the substrate and the
shape that cells adopt on a scaffold can force cells to differentiate
to a certain lineage. Most interestingly, it has been shown that
these physical stimuli can even overrule the stimulus provided by
addition of soluble differentiation factors to the culture medium
[95]. This may open new perspectives for the design of scaffold
materials with tuned physical properties that facilitate survival,
growth and differentiation of stem cells towards disc cells, which
ultimately may restore disc function.

Several scaffolds have been investigated to study the interaction
between in vitro cultured disc cells and the material, including fib-
rin glue [96], chitosan gel in combination with genipin [97, 98],
collagen/ hyaluronate [99], type II collagen-based Atelocollagen®

gel [37, 39] and a composite scaffold of polyglycolic acid and
 alginate/calcium [100, 101]. Recently, the interaction of MSCs with
some of these materials was also studied. Performed with a
hyaluronan scaffold, it was found that stem cells can survive in the
relative hostile environment of the disc [99] and preliminary results
suggested that MSCs could differentiate into intervertebral disc
cells within an Atelocollagen® scaffold [39].

Currently, major problems still arise when performed with these
scaffolds for tissue engineering purposes. A problem with chitosan
and collagen/hyaluronan scaffolds is that the proteoglycan content is
far lower in comparison to native cartilage. Presumably, the pre-fab-
ricated scaffolds exhibit relatively large pores to allow cell seeding into
the scaffolds, so that Glycosaminoglycans (GAG) produced by the
cells may not be retained [98] suggesting that in situ curable poly-
mers, which entrap both cells and produced ECM molecules, are
favourable. In this respect, a trend towards designing micro- or nano-
scale dimension scaffolds may provide new perspectives [102].

Within the context of the one-step surgical procedure per-
formed with ASCs, an important issue might be the selection of
cells via the scaffold material. A prerequisite for a one-step oper-
ational procedure is that at least the stem cells within the hetero-
geneous SVF adhere to a scaffold. In addition, these stem cells
should adhere within a short time frame. At present, studies are
conducted in our laboratory investigating the adherence of the dif-
ferent cell types within SVF to a bioresorbable polycaprolactone
scaffold. Preliminary results indicate that adipose stem cells
adhere within less than an hour and that the ASC-like cells prefer-
entially adhere (see Fig. 3). ASCs from the SVF might selectively
adhere to micro-particles of caprolactone, which subsequently can
be injected into the degenerated disc.

Finally, ASCs will be confronted with the specific hypoxic and
acidic environment of the degenerated disc [103, 104]. The influ-
ence of hypoxia has been a topic of great interest, because NP
cells or chondrocytes grow in a low-oxygen environment.
Although there are some contradictory data about the effect of
hypoxia on chondrogenic differentiation of MSCs, most studies
suggest that hypoxia can promote chondrogenic differentiation
[105–107]. The influence of pH on disc cells has been studied less
extensively but clearly has a negative effect on the ECM turnover
of the NP cells [108].
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Fig. 2 Effects of micromass NP cells on the differentiation related gene
expression of ASCs in monolayer or micromass. A: NP cells only signif-
icantly down-regulated the gene expression of osteopontin and type I
collagen in monolayer ASCs, but they significantly up-regulated the
gene expression of aggrecan and concomitantly down-regulate the gene
expression of osteopontin, type I collagen and PPAR-γ in micromass
ASCs; the data are expressed as means ± sd, n=3; the dash line repre-
sents time-point zero. B: Gene expression of type II collagen was only
induced in the group where both ASCs and NP cells were cultured in
micro masses.  *: Significant difference (p<0.05). NP cells: Nucleus pul-
posus cells; ASCs: Adipose mesenchymal stem cells. Mono: monolayer,
MM: micro mass. AGG: aggrecan, COL II: type II collagen, COL I: type I
collagen, PPAR-γ: peroxisome proliferator-activated receptor gamma.
(Reprinted from Biochemical and Biophysical Research
Communications, vol. 359, Lu ZF, Zandieh Doulabi B, Wuisman PI,
Bank RA and Helder MN, Differentiation of adipose stem cells b ynu-
cleus pulposus cells: configuration effects., p. 991–6, 2007 with per-
mission from Elsevier.)
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in vivo studies

Animal models

The complexity of factors involved in regeneration of the inter-
vertebral disc can be studied only partially in vitro. Animal mod-
els offer the possibility to study the process of degeneration and
regeneration over time [109]. Furthermore, in vivo studies can
be used for a standardized evaluation of biomechanical, histo-
chemical and morphologic characteristics of degenerative
processes in the spine [109, 110] and innovative regenerative
treatment modalities for disc degeneration can be tested in vivo
[17, 40]. Several animal models of disc degeneration are cur-
rently available [110–114]. However, these animal models, espe-
cially small animal models (e.g. rat, rabbit), have shortcomings
in their comparability to human disc degeneration, in particular
with regard to disc geometry and remaining of a certain cell type
(notochord cells, see below), even in adult animals [109]. The
difference in size between small animal discs and human discs
clearly affects the diffusion process, crucial for the oxygenation
of disc cells. Larger animal models have been validated as good
models of the human disc with respect to biomechanics, geom-
etry, structure and biochemistry, particularly the bovine, ovine
and canine models [115–117]. Notochordal cells, however, are
present in the intervertebral discs of most of these animals at the
age of skeletal maturity, unlike in human beings [118, 119].
Notochordal cells appear to optimize disc matrix synthesis and
therefore their presence influences the process of disc degener-
ation and regeneration [120, 121]. As a natural model for DDD
has not been described in a large mammal, our group started to
develop a standardized, reproducible DDD model performed with
chondroitinase ABC [122]. Most importantly, the animal model
must be similar in nature to the human pathologic process that
it is intended to mimic. Otherwise, conclusions made from dis-
similar animal and human pathologic states may not be clinically
appropriate. 

Cells in disc regeneration in vivo

Various cell types are currently under investigation for their thera-
peutic potential for intervertebral disc degeneration. Nucleus pul-
posus cells were studied in a canine disc degeneration model [35].
Autologous NP cells were isolated, expanded in vitro and subse-
quently returned to an enucleated dog intervertebral disc. The
transplanted cells survived, synthesized proteoglycan and disc
height was regained [35]. At present, the effect of autologous NP-
cell transplantation is being studied in clinical trials as well [123,
124]. Preliminary results after 2 years of follow-up show that
reduction of low back pain and prevention of loss of disc height
have been achieved with the transplantation treatment [123, 124].

Other strategies for cell-based repair of the nucleus pulposus
include the re-insertion of nucleus pulposus [125, 126] or elastic
cartilage from the ear [38]. Using different in vivo models (rat and
rabbit, respectively), in which a disc herniation was induced, the
re-insertion of a fresh or cryo-preserved nucleus pulposus was
found to prevent the progression of DDD [125, 126]. In another
rabbit study, cultured elastic cartilage-derived chondrocytes were
injected in a previously reamed nucleus pulposus [38]. After 
6 months of follow-up, there was only vital hyaline-like cartilage in
the place of the reamed nucleus pulposus and no fibrous tissue.
However, for both, autologous disc chondrocytes and elastic carti-
lage from the ear, an intrusive recovery procedure is required
including an ex vivo expansion of cells. In case of retrieval of cells
from a herniated disc, these cells may be abnormal and only few
may be suited for repair.

Few studies have been performed investigating the effect of
MSCs on experimentally induced disc degeneration. One group per-
formed several studies in rabbits using a nucleus aspiration model
[39–41]. MSCs embedded in a collagen type II gel were injected in
the disc [39–41]. MSCs survived over an 8-week period and proteo-
glycan content was enhanced in the implanted discs [39]. In later
studies, implantation of autogenic green fluorescent protein-tagged
MSCs also resulted in preservation of annular structure, re-estab-
lishing a disc nucleus positive for glycosaminoglycan and keratan
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Fig. 3 Figure A shows a confocal
image of SVF cells attaching to
the inner pore of a 70:30
Poly(D,L-lactide-co-caprolac-
tone) scaffold. After allowing the
heterogeneous mixture of SVF
cells to attach to the scaffold for
one hour, cells were fixated and
stained for CD34 (green). The
nuclei of all attached cells were
stained with propidium iodide as
a counter stain (red). Figure B
shows the exact same picture in
which the scaffold was not visu-
alized for clarity reasons.
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sulfate proteoglycans, as well as partial restoration of disc height
and disc hydration [40, 41]. In addition, the authors suggested that
the MSCs in the re-established nucleus had differentiated into a
chondrocyte-like/nucleus pulposus cell phenotype expressing colla-
gen II, keratan sulfate and chondroitin-4-sulfate [40]. In conclusion,
although autogenic MSC implantation could not completely regen-
erate the disc, it could indeed overcome and counter the degenera-
tion process to some extent. Biological ‘triggering’ of the MSCs
prior to implantation in order to direct differentiation might enhance
the possibilities of stem cell therapy [127, 128].

Extending the concept of stem cell therapy further, investiga-
tors have exploited the use of allogenic stem cells. This has the
added advantage of off-the-shelf availability. Moreover, as the
cause of disc degeneration is thought to be multi-factorial, the use
of allogenic stem cells could eliminate potential autogenic precip-
itating factors such as genetic predisposition [11, 129, 130], or
the diminished potency of stem cells due to natural aging [131].
In fact, the IVD is suggested to be immune-privileged due to its
avascular nature. A study showing that allogenic nucleus pulposus
cell transplantation did not elicit lymphocyte infiltration is consis-
tent with this notion [132]. The problem of immune rejection is
likely to be even less for allogenic MSCs, since MSCs are capable
of escaping allogenic recognition [133, 134]. Allogenic MSC
transplantation has been attempted in normal rabbit lumber IVD,
with MSCs surviving in the nucleus pulposus for 6 months pro-
ducing proteoglycan and collagen II, suggesting that allogenic
MSCs have similar regeneration potentials as autogenic cells
[135]. Allogenic transplantation has also been investigated in nor-
mal coccygeal IVD of adult rats [99]. When transplanted in a
hyaluronan gel scaffold, bone marrow MSCs survived in the
nucleus pulposus over a 4-week period [99]. Thus the potential of
allogenic stem cells is worth further investigations using longer time-
points and larger animal models.

Perspective

Regenerative medicine aims for the replacement, regeneration and
remodelling of tissue or the functional enhancement of impaired
tissues in vivo or to engineer and to grow functional tissue substi-
tutes in vitro to implant in vivo. For the spine, the ultimate goal is
the regeneration of a functional motion segment, consisting of a
nucleus pulposus and annulus fibrosis, when the focus is on disc
repair. However, DDD is quite complex, involving alteration in
nutrition, disturbance in biomechanics, changes in matrix
turnover, loss of cells, and in changes and loss of integrity of
macrostructures. Such complexities confuse the search for rea-
sonable therapeutic targets. Regenerative medicine building
blocks comprise cells, scaffolds and biologics. Biomaterials are
designed to promote the organization, growth and differentiation
of cells in the process of forming functional tissue by providing
structural support, biological containment and chemical clues.
Biologics are needed to enhance cell proliferation and differentia-
tion and include growth factors, cytokines and hormones, as well

as mechanical signals. Another key element in regenerative medi-
cine is the availability of regeneration competent cells. While cells
constitute only 1% of the adult disc tissue by volume, their role in
matrix synthesis and metabolic turnover is crucial and therefore a
therapeutic strategy could be to replace, regenerate or augment
the disc cell population. Despite our imperfect knowledge, several
cell-based approaches are in various stages of preclinical and even
clinical evaluation [35, 40, 124].

Pre-clinical studies have shown the possibility to direct cells
towards the NP-cell-like phenotype for regenerative purposes.
When designing in vitro or in vivo experiments, in our opinion the
clinical applicability must be considered. Each culture system has
advantages and disadvantages for specific experiments and disc
cells behave differently in different systems [136]. The specific
questions asked will determine the appropriate experimental model
that should be used. Three-dimensional culture systems may be
preferable to two-dimensional systems because they promote the
retention of the chondrocytic phenotype of NP cells [137] and the
induction of NP-cell-like phenotype of co-cultured ASCs (see Fig. 1)
[79]. In addition, the microenvironment of the DDD should be con-
sidered as degenerated discs have increased levels of proinflam-
matory cytokines, such as IL-1 and TNF-�, as well as a decreased
nutrition and low pH and low oxygen tension in the NP [138].

The feasibility of regenerating a degenerated intervertebral disc
has been shown by two recent clinical studies in human beings. In
one study, fresh frozen composite disc allografts have shown to
be an effective treatment for DDD, with good union of the grafts,
preservation of motion and stability and without an immune reac-
tion occurring [139]. Another feasible strategy for arresting and
reversing DDD is the use of autologous disc chondrocytes as
described previously [124]. However, the use of autologous chon-
drocytes or bone marrow-derived MSCs requires the ex vivo
expansion of the cells, which is costly, time-consuming and
strictly regulated by the FDA, making it an intricate procedure. The
use of allogenic progenitor cells would offer a more cost-effective
approach. This possibility arises because of claims that MSCs can
be successfully allografted [42, 140]. If so, a uniform donor line of
these cells could be established and used directly in all suitable
patients. Another possibility to circumvent these disadvantages is
the use of the one-step procedure, with mesenchymal stem cells
obtained from autologous adipose tissue. This concept circum-
vents these strict and cumbersome regulatory issues by comply-
ing with the FDA criteria for minimal manipulation of stem cells
[141], thus boosting the feasibility and applicability of stem cell
technology in surgical disciplines considerably. Also, clinical costs
are reduced if a one-step procedure is available, as the number
and duration of hospital admissions may be diminished, as well as
the need for expensive stem cell culture facilities. Disease trans-
mission is decreased in a one-step procedure [142], patient dis-
comfort will be diminished as uncomfortable harvesting proce-
dures (BM-MSCs) and successive hospital admissions are not
necessary in a one-step procedure performed with ASCs. To fur-
ther enhance the full potential of ASC disc therapy, future work
should be focused on the ways of optimizing the efficacy as well
as delineating the biological processes involved. The survival of
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transplanted cells can be a limiting factor and therefore the fate of
ASCs should be carefully tracked after implantation, with special
attention paid to the cell phenotype, induced functions and long-
term survival of ASCs. Besides survival and injected cell numbers,
biochemical triggering of ASCs, efficient removal or inactivation of
degeneration by-products should be considered in future
research. ASCs may have to be preconditioned if they are to sur-
vive and restore matrix in the harsh environment that is acidic,
hypoxic and poor in nutrients of the degenerating disc. Most
importantly, the enhancement may simply require ‘standard’ SVF
procurement as SVF of adipose tissue is a mixture of various cells,
with varying protein expressions, having the capacity to differen-
tiate into different lineages depending on the involved differentiat-
ing-inducing factors and culture conditions. As shown in in vitro
experiments, the micro-environment of the NP might be a suffi-
cient trigger for ASC to develop into a chondrocyte-like NP cell
producing extracellular matrix [73, 79]. At present the impact of
this conclusion on cell-based tissue engineering principles of the
disc is unknown as, for instance, the use of purified multi-potent
SVF with angiogenic potential might also allow better vasculariza-
tion and tissue growth compared to the unpurified SVF pool. While
angiogenesis is favourable in spinal fusion (bone formation), it is
not desirable in disc regeneration.

Possibly, survival of the ASCs is not necessarily a prerequisite
for a successful regeneration strategy. ASCs might be efficient
enough to act as helpers to induce endogenous disc cell prolifer-
ation and differentiation, which has not been sufficiently evaluated
to date.

Conclusions
Disc degeneration is a complex issue that involves a myriad of
factors and by careful incremental research its mysteries are
slowly unravelling. Regenerative medicine concepts have much
to offer for orthopaedics in general and disc disorders in partic-
ular, aiming to re-establish tissue structural properties. SVF-
based treatment concepts for a variety of DDD indications are
under development and might be used single or in combination
with biologics and scaffold materials, either in a one-step
(preferable) or in a multi-step procedure. For clinical application,
these concepts should not only be effective, but also safe and
affordable, as degenerative disc disease will dramatically
increase in the near future posing a large economic burden on
the health care system.
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