Therapeutic role of hematopoietic stem cells in autism spectrum disorderrelated inflammation

Dario Siniscalco^{*1,2,3}, James Jeffrey Bradstreet⁴, Nicola Antonucci⁵

¹Department of Experimental Medicine, Second University of Naples, Italy

²Centre for Autism – La Forza del Silenzio, Caserta, Italy

3Cancellautismo - no profit association for autism care, Florence, Italy.

⁴International Child Development Resource Center, Cumming, Georgia, USA.

⁵Biomedical Centre for Autism Research and Treatment, Bari, Italy.

*Corresponding Author: Dario Siniscalco, Department of Experimental Medicine, Second University of Naples; via S. Maria di Costantinopoli, 16 - 80138 Napoli, Italy; tel. +39 (0)81 5665880; fax +39 (0)81 5667503; email: <u>dariosin@uab.edu</u>

Abstract

Autism and autism spectrum disorders (ASDs) are heterogeneous, severe neurodevelopmental disorders with core symptoms of dysfunctions in social interactions and communication skills, restricted interests, repetitive - stereotypic verbal and non-verbal behaviours. Biomolecular evidence points to complex gene-environmental interactions in ASDs. Several biochemical processes are associated with ASDs: oxidative stress (including endoplasmic reticulum stress), decreased methylation capacity, limited production of glutathione; mitochondrial dysfunction, intestinal dysbiosis, increased toxic metal burden and various immune abnormalities. The known immunological disorders include: T-lymphocyte populations and function, gene expression changes in monocytes, several autoimmune-related findings, high levels of N-acetylgalactosaminidase (which precludes macrophage activation), and primary immune deficiencies. These immunological observations may result in minicolumn structural changes in the brain, as well as, abnormal immune mediation of synaptic functions. Equally, these immune dysregulations serve as the rationale for immune-directed interventions such as hematopoietic stem cells (HSCs), which are pivotal in controlling chronic inflammation and in the restoration of immunological balance. These properties make them intriguing potential agents for ASD treatments. This prospective review will focus on the current state-of-the-art knowledge and challenges intrinsic in the application of hematopoietic stem cells for ASD-related immunological disorders.

Key words: autism, hematopoietic stem cells, cell transplantation, cytokines, inflammation. **Running title**: hematopoietic stem cells and autism.

Autism spectrum disorders: overview

Autism and autism spectrum disorders (ASDs) are severe heterogeneous neuro-developmental abnormalities characterized by dysfunctions in social interactions and communication skills, restricted interests, repetitive and stereotypic verbal and non-verbal behaviours [1,2]. Autism related disorders are increasing at an alarming rate and have now affected 2% (3.23% of boys) of US school-aged children [3].

ASDs have multifactorial and polygenic features which include: a complex combination of genetic, epigenetic and environmental interactions (i.e. infectious agents, air pollution, organophosphates, heavy metals) [4,5].An early inflammatory processhas been proposed as the potential aetiology of ASDs [6]. This hypothesis is supported by animal models and has been extensively reviewed by Meyer, et.al. [7]. Within that review, the authors refer to the long-term consequences of prenatal immune provocation in the rodent-model [8]. Specifically, experiments exposed pregnant mouse dames to PolyI:C (a synthetic chemical resembling viral RNA) via tail vein infusion at either mid or late gestation. Rapid induction of CNS cytokine activity was noted in the pups which coincided with reduction in reelin production. This effect was noted to have lifelong consequences on both the structure and immune status of the CNS in the mice following *in utero* exposure to a viral analog. Potentially related to these animal models are the recent observations of elevated N-acetylgalactosaminidase (Nagalase) levels in the blood of children with ASDs [9].This may reflect ongoing viral latency, since Nagalase is observed to be elevated in numerous viral-mediated acute and chronic disease states. This latency may have been present from *in utero* or the early postnatal period.

Others have observed minicolumn abnormalities in ASDs [10]. As recently reviewed by Folsom and Fatemi, reelin is integrally involved in ASD pathophysiology and is further a regulator of minicolumn structure and function [11]. It therefore appears likely that in many ASDs an early (*in*

utero or early postnatal period) immunological insult disrupts reelin signaling and cytokine communication in the CNS.

Still other biochemical and cellular processes are reportedly associated with ASDs: oxidative stress, endoplasmic reticulum stress, decreased methylation capacity, limited production of glutathione, mitochondrial dysfunction, intestinal dysbiosis, increased toxic metal burden, immune dysregulation, immune activation of neuroglial cells [12]. These findings may represent consequences of the primary etiological processes. Regardless of the cause or effect nature of these observed abnormalities, it is probably that these issues interfere with proper CNS functioning in ASDs, and as such they are reasonable targets for therapeutic interventions.

There is, however, a lack of consensus regarding the etiopathologies of ASDs [12]. Current medication usage attempts to reduce the problematic behaviours, without addressing the basic underlying etiologies [13, 14]. These medications often lack evidence of safety and efficacy for the core features of ASD, and instead target maladaptive behaviours and comorbid psychopathology (i.e. irritability, depression, anxiety, hyperactivity and obsessive-compulsive behaviours) [15].

Concerns over safety and limited availability of approved psychotropic medications for children in general, has been encouraging the development of biomedical treatments to target specific biological issues or symptoms. These include the use of: melatonin, acetylcholinesterase inhibitors, naltrexone, carnitine, tetrahydrobiopterin, vitamin C, glutamate antagonists, special dietary supplements, hyperbaric oxygen treatment, immunomodulation and anti-inflammatory treatments, oxytocin, acupuncture, music therapy and vision therapy [16, 17, 18, 19]. Several behavioural options are alsocurrently used as effective intervention strategy for autism [20, 21].

In the midst of these various therapies, stem cell therapiesare emerging as the future of molecular and regenerative medicine [22], and they are providing new opportunities for ASD interventions [12,23]. Novel findings on the molecular and cellularbasis of ASDs indicate that at least some features of ASDs may be amenable to stem cell therapy [24].

Autism spectrum disorders: CNS inflammatory conditions

One difficult feature of the immune dysregulation in ASDs appears to be abnormal regulation of the blood brain barrier (BBB) [25]. The BBB functions are complex and incompletely understood, however, it is clear that the BBB both produces and regulates cytokines, and serves as an immunological interface between the CNS and the peripheral immune system [26]. HSCs may represent one of the few effective interventions to restore proper regulation of the BBB in ASDs. Stem cells have been recently proposed as elective candidate for modeling BBB [27]. A large number of endogenous HSCs was found in brain [28]. These HSCs provide constant generation of macrophagic cells without the disturbance of BBB. Macrophagic cells contribute to the normal homeostasis of brain function by removing cellular debris, such as myelin fragments.

Exogenous transplanted stem cells are able to migrate into CNS and retain the differentiation capacity [29]. Clearly, the BBB allows the passage of stem cells from the blood into the brain or the spinal cord [30], where they can exert their roles. Interestingly, it has been demonstrated that stem cells, in vitro differentiated in epithelial cells, possess many BBB-related attributes, such as well-organized tight junctions, expression of nutrient transporters and polarized efflux transporter activity [31]. These properties are very useful in restoring BBB disruption. In this way, in ASDs, transplanted stem cells could restore the BBB characteristics.

Accumulating evidence points to a chronic up-regulation of inflammatory cytokines in the ASD brain [32, 33]. Recently, a role of neuroinflammation and apoptosis mechanisms in the aetiology of autism has been proposed [34], as several biochemical parameters related to inflammation were found up-regulated in children with ASDs [34,35]. Chronic peripheral and central alterations in the inflammatory response have been reported in ASDs [6]. Neuroinflammatory evidence was further

documented by remarkably elevated levels of cerebrospinal fluid tumor necrosis factor-alpha (TNF- α) in ASDs [36]. TNF- α profoundly inhibits synaptic communication [37]. Correlations between pro-inflammatory cytokine levels and autistic symptoms have been reported [38]. Interestingly, the cerebellum and temporal cortex of autistic children show decreased glutathione (GSH/GSSG) redox/antioxidant capacity and increased oxidative stress associated to a chronic inflammatory response [39]. Glutathione is a critical intracellular anti-oxidant and children with ASDs have documented deficiencies in the reduced form [40]. Lowered GSH levels indicate an adaptive response to ongoing inflammation or infection. In addition, it has been proposed that hyperbaric oxygen therapy may mediate the noted benefits in ASDs via an anti-inflammatory response, perhaps through mobilization of anti-inflammatory CD34+ stem cells from the bone marrow [41].

Pro-inflammatory indications from blood studies in ASDs

At a molecular level, the transcriptional factor,nuclear factor- κ B (NF- κ B) DNA binding activity was found elevated in peripheral blood samples of children with autism [42]. NF- κ Bis an important gene involved in the mediation of inflammation and apoptosis, indicating that pro-inflammatory processes in autism could be up-regulated by this transcriptional factor. Increased NF- κ B expression levels were found also in post-mortem samples of orbito-frontal cortex from autistic patients, further indicating a neuro-inflammatory condition [43]. Peripheral blood mononuclear cells (PBMCs) demonstrate significant aberrations in autistic children [35]. In autism, these cells are committed to a pro-inflammatory state, via significantly more pro-inflammatory cytokines, including TNF α and several interleukins, IL-1 β and IL-6. The ratio of pro-inflammatory/antiinflammatory cytokines, TNF α /TNFR-II (tumor necrosis factor receptor II) was also higher in autistic patients [44]. The pro-inflammatory cytokine IL-6 was found increased also in the cerebellum of autistic children [45].

Gastrointestinal Immune Alterations in ASDs

In addition to the reported CNS immune issues in ASDs, the intestinal tract (GI) has been studied as a source of chronic inflammation in this population. Recently, extensive evaluation of GI transcriptomes of a group of children with ASDs and GI symptoms were compared to both health tissue, as well as known cases of Crohn's disease (CD) and ulcerative colitis (UC) [46]. Significant inflammatory transcriptome overlap was observed between the ASD/GI group and both CD and UC. However, the ASD/GI group demonstrated some distinctions in the inflammatory pattern. Various stem cell therapies have been proposed for CD and UC, which may have application to ASD/GI issues as well, but this is a complex issue. One group recently demonstrated dysregulation of immune-hematopoiesis in colitis mediated by inflammatory cytokines, with increased proliferating hematopoietic stem cells in the bone marrow and spleen. They further demonstrated increased granulocyte-monocyte progenitor (GMP) production at the expense of erythroid and lymphoid progenitors. GMPs were shown to exacerbate the colitis. The Autologous Stem Cell Transplantation International Crohn's Disease (ASTIC) trial recently published the first round of data [47]. Bone marrow derived and expanded CD34+ stem cells were infused intravenously with some significant positive results (the Crohn's Disease Activity Index (CDAI) fell from 324 (median, interquartile range 229-411) to 161 (85-257, n = 17).

Hematopoietic stem cells and the inflammatory state in autism

Hematopoietic stem cells (HSCs) take a pivotal role in controlling chronic inflammation and in creating immune regulation, and are the cells responsible for forming blood and immune cells. They were found in circulating blood, the spleen, and bone marrow and are characterized by specific cell markers belonging to the cluster of differentiation family (CD34, CD59, CD90 and CD117). HSCs show self-renewal, mobilization and multipotent differentiation capacities, as they are able to give rise to the myeloid (including monocytes and macrophages) and lymphoid cells, replenishing all blood cell types and providing homeostasis of blood cells [48]. HSCs are also able to home to the

damaged sites [49]. Hematopoietic stem cell transplantation has gained much consideration as therapy for hematological malignancies and for the treatment of severe autoimmune diseases [50].

Interestingly, it has been demonstrated that HSCs are strictly connected with inflammation. Several inflammatory signaling molecules are essential to the HSC response [51,52], indicating that the local microenvironment plays an instructive role in stem cell fate [53]. While in normal condition HSCs travel through peripheral blood at low number, they are strongly mobilized by inflammation [54]. The activation of inflammatory cytokine signaling pathways promotes transcriptional changes to drive immune and plasticity responses in HSCs [51]. Indeed, in inflammation processes, increased levels of cytokines and hematopoietic growth factors trigger mobilization and proliferation of HSCs, driving a quantitative *in vivo* expansion of the hematopoietic tissue [55]. HSCs have demonstrated powerful effects also on acute inflammation.

The ability of HSCs to traffic to sites of inflammation outside of the bone marrow [56] suggests that they could be a useful tool in treating inflammatory processes related to autism pathology.

Pro-inflammatory molecules released in ASDs could be able to recruit HSCs to the sites of major inflammation processes, where these cells could exert their beneficial actions against inflammation. What are the exact molecular mechanism of action are still to be fully elucidated. However, HSCs show paracrine ability [57]. As other stem cell subtypes, HSCs are able to synthesize and release a broad variety of cytokines, chemokines and growth factors. These bioactive factors secreted from stem cells suppress the altered immune responses, inhibit apoptosis and stimulate recruitment, retention, mitosis, and differentiation of tissue-residing stem cells [58]. Indeed, it has been demonstrated that hematopoietic CD34(+) stem cells are able to down-regulate the pro-inflammatory TNF- α , IFN- γ , and IL-1, as well as to up-regulate the anti-inflammatory cytokine IL-10 [59].

Challenges in the application of HSCs to ASDs

Although HSCs are attractive candidates for the restoration of ASD-related immune-mediated pathologies, several concerns must be addressed to adequately understand their proper application. As mentioned previously, the BBB may not be properly managing its immunological regulatory functions, and as such it may allow abnormal trafficking of stem cells into the CNS with resultant unintended consequences. Equally, HSCs may offer desirable reparative functions to the BBB.

The reported structural and functional abnormalities of ASD minicolumns present a daunting challenge to HSCs therapeutics. However, progress with animal models should allow for adequate testing of the amenability of minicolumnopathies to HSC interventions.

In a recent review of the bidirectional nature of stem cells to both repair and extinguish inflammatory processes, or in contradistinction, to contribute to the maintenance of the inflammatory state, the authors point out the importance of proper cytokine signaling as deterministic of the end-effect of stem cell responses [60]. Others have expressed equal concern over stem cell enhancement of inflammatory conditions [61, 62].

Thus, one feature of any effective HSC therapeutic application must be consideration for proper cytokine signaling. In particular, anti-inflammatory medications and potentially even the anti-inflammatory effects of biological therapies, e.g. curcumin or luteolin, may interfere with stem cell targeting and allow them to exacerbate the existing inflammatory state. Again, the hope is that animal modeling will assist in directing therapeutic application.

In a similar way, the inflammatory bowel disease associated with autism, may respond in a comparably favorable way to HSCs as reported in the ASTIC trial. But once again caution must be inserted as upregulation of GMPs were noted in the autism population studied by Walker, et.al.

[46]. A reasonable concern would be the methodologies to prevent recruitment of HSCs to this inflammatory GMP population.

Further complicating our application of HSCs to ASDs, relates to the unresolved, underlying cause for the chronic inflammation. It is reasonable to consider a chronic infectious agent(s) as the maintainer of the immune dysregulations observed. Potentially, the events leading to the inflammation may merely represent the long-term consequences of an ill-timed exposure during gestation or early postnatal life. The latter, would represent a more desirable scenario for HSC therapeutics, while the former presents substantial challenges. This also raises the issue of autologous or allogeneic source material for the HSCs. While using autologous HSCs preclude concerns over graft-versus-host reactions, these stem cells may be programmed by the latent infection is undesirable ways. The severe risk of graft-versus-host disease (GVHD), the toxicity of ablative conditioning, and the need for close donor-recipient matching would need to be addressed if allogeneic sources of HSCs were used [63]. However, these serious and life-threatening challenges make allogeneic HSCs undesirable in ASDs.

Summary

While HSCs are populations of multipotent stem cells that have been identified as promising potential candidates for treating a broad range of conditions; their basic biology remains inadequately characterized to answer all of the questions raised by their use. Despite these concerns, HSCs, based on an internet review of the stem cell providers offering services to patients, are already in use for ASDs. As such, a better understanding of the HSC molecular mechanisms, as well as experimental or clinical data, is urgently needed to provide more data to develop proper strategies to improve the use of these cells in therapy in ASD in a large scale [49].

Legend

Figure 1. Possible mechanisms of action of hematopoietic stem cells (HSCs) in autism spectrum disorder (ASD) therapy. Pro-inflammatory molecules released in ASDs could recruit HSCs to the site of inflammation. HSCs synthesize and release a broad variety of biofactors, including cytokines, chemokines and growth factors. These bioactive molecules secreted from stem cells are able to suppress aberrant immune responses and stimulate recruitment, retention and activation of tissue-residing stem cells. In addition, HSCs are able to down-regulate the pro-inflammatory TNF- α , IFN- γ , and IL-1, that are responsible for neuroinflammatory processes in ASDs, as well as to up-regulate the anti-inflammatory cytokine IL-10.

Acknowledgments

The authors gratefully thank Mr. Enzo Abate, Ms. Giovanna Gallone, and the nonprofit organizations "La Forza del Silenzio" and "Cancellautismo," Italy for their useful assistance.

References

[1] American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Text Revision, 4th ed.; Washington, DC, 2000.

[2] Stanković M,Lakić A,Ilić N. Autism and autistic spectrum disorders in the context of new DSM-V classification, and clinical and epidemiological data. *SrpArhCelokLek.*, 2012;140(3-4):236-243.

[3] Blumberg SJ, Bramlett MD, Kogan MD, Schieve LA, Jones JR, Lu MC.Changes in Prevalence of Parent-reported Autism Spectrum Disorder in School-aged U.S. Children: 2007 to 2011–2012. *National health statistics reports;* no 65. Hyattsville, MD: National Center for Health Statistics. 2013.

[4] Toro R,Konyukh M, Delorme R,Leblond C, Chaste P,Fauchereau F, Coleman M,Leboyer M,Gillberg C,Bourgeron T. Key role for gene dosage and synaptic homeostasis in autism spectrum disorders. *Trends Genet*. 2010;26:363-372.

[5] Herbert M.R. Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. *CurrOpin Neurol*. 2010;23:103-110.

[6] Depino AM. Peripheral and central inflammation in autism spectrum disorders. *Mol Cell Neurosci.* 2013;53:69-76.

[7] Meyer U, Feldon J, Fatemi SH. In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. *Neurosci Biobehav Rev.* 2009; 33(7):1061-79.

[8] Meyer U, Nyffeler M, Engler A, Urwyler A, Schedlowski M, Knuesel I, Yee BK, Feldon J. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. *J Neurosci.* 2006; 26(18):4752-4762.

[9] Bradstreet J, Vogelaar E, Thyer L. Initial observations of elevated alpha-N-acetylgalactosaminidase activity associated with autism, and observed reductions from Gc protein - macrophage activating factor injections. *Autism Insights* 2012:4 31-38.

[10]Casanova MF, van Kooten IA, Switala AE, vanEngeland H, Heinsen H, Steinbusch HW, Hof PR, Trippe J, Stone J, Schmitz C. Minicolumnar abnormalities in autism. *Acta Neuropathol*. 2006;112(3):287-303.

[11]Folsom TD, Fatemi SH. The involvement of Reelin in neurodevelopmental disorders. *Neuropharmacology*. 2013; 68:122-135.

[12]Siniscalco D,Sapone A,Cirillo A, Giordano C,Maione S,Antonucci N. Autism spectrum disorders: is mesenchymal stem cell personalized therapy the future? *J Biomed Biotechnol*. 2012;2012:480289.

[13] Chadman KK, Guariglia SR, Yoo JH. New directions in the treatment of autism spectrum disorders from animal model research. *Expert Opin Drug Discov*. 2012; 7(5): 407-416.

[14] HampsonDR, Gholizadeh S, Pacey LK. Pathways to drug development for autism spectrum disorders. *Clin Pharmacol Ther*. 2012; 91(2):189-200.

[15]Siegel M, Beaulieu AA. Psychotropic medications in children with autism spectrum disorders: a systematic review and synthesis for evidence-based practice. *J Autism Dev Disord*. 2012;42(8):1592-1605.

[16] Rossignol DA. Novel and emerging treatments for autism spectrum disorders: a systematic review. *Ann Clin Psychiatry*. 2009; 21(4): 213-236.

[17] Wong VC, Sun JG. Randomized controlled trial of acupuncture versus sham acupuncture in autism spectrum disorder. *J Altern Complement Med.* 2010; 16: 545-553.

[18] Filipek PA, Steinberg-Epstein R, Book TM. Intervention for autistic spectrum disorders. *NeuroRx.* 2006; 3: 207-216.

[19] Bradstreet JJ, Smith S, Baral M, Rossignol DA. Biomarker-guided interventions of clinically relevant conditions associated with autism spectrum disorders and attention deficit hyperactivity disorder. *Altern Med Rev.* 2010;15(1):15-32.

[20] Vismara LA, Rogers SJ. Behavioral treatments in autism spectrum disorder: what do we know? *Annu Rev Clin Psychol*. 2010; 6: 447-468.

[21] Kasari C, Lawton K. New directions in behavioral treatment of autism spectrum disorders. *CurrOpin Neurol.* 2010; 23: 137-143.

[22]Siniscalco D, Giordano A, Galderisi U. Novel insights in basic and applied stem cell therapy. *J Cell Physiol*. 2012;227(5):2283-2286.

[23] Siniscalco D. Current Findings and Research Prospective in Autism Spectrum Disorders. *Autism* 2013; S2:e001.

[24]Siniscalco D. Stem Cell Research: An Opportunity for Autism Spectrum Disorders Treatment. *Autism* 2012;2:e106.

[25] Theoharides TC, Zhang B. Neuro-inflammation, blood-brain barrier, seizures and autism. *J Neuroinflammation*. 2011;8:168.

[26] Allan Siegel and Steven S. Zalcman (editors). The Neuroimmunological Basis ofBehavior and Mental Disorders. November 14, 2008. Pages: 3-12. ISBN-10: 0387848509.

[27]Lippmann ES, Al-Ahmad A, Palecek SP, Shusta EV. Modeling the blood-brain barrier using stem cell sources. *Fluids Barriers CNS*. 2013; 10(1):2.

[28]Bartlett PF. Pluripotentialhemopoietic stem cells in adult mouse brain. *Proc Natl Acad Sci U S A*. 1982; 79(8):2722-27225.

[29] Simard AR, Rivest S. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. *FASEB J.* 2004;18(9):998-1000.

[30] de Munter JP, WoltersECh. 70th Birthday symposium of Prof. Dr. Riederer: autologous adult stem cells in ischemic and traumatic CNS disorders. *J Neural Transm.* 2013; 120(1):91-102.

[31]Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A, Palecek SP, Shusta EV. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. *Nat Biotechnol.* 2012; 30(8):783-791.

[32]Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, Frye RE, James SJ. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. *Transl Psychiatry*. 2012;2:e134.

[33]Ginsberg MR, Rubin RA, Falcone T, Ting AH, Natowicz MR. Brain transcriptional and epigenetic associations with autism. *PLoS One*. 2012;7:9.

[34]El-Ansary A, Al-Ayadhi L. Neuroinflammation in autism spectrum disorders. J. *Neuroinflammation*. 2012; 9:265.

[35]Siniscalco D, Sapone A, Giordano C, Cirillo A, de Novellis V, de Magistris L, Rossi F, Fasano A, Maione S, Antonucci N. The expression of caspases is enhanced in peripheral blood mononuclear cells of autism spectrum disorder patients. *J Autism Dev Disord*. 2012; 42(7):1403-1410.

[36]Chez MG, Dowling T, Patel PB, Khanna P, Kominsky M. Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. *Pediatric Neurology*. 2007; 36(6): 361–365.

[37]Zhang H, Dougherty PM. Acute inhibition of signaling phenotype of spinal GABAergic neurons by tumor necrosis factor-alpha. *J Physiol*. 2011;589(Pt 18):4511-4526.

[38]Buehler MR. A proposed mechanism for autism: an aberrant neuroimmune response manifested as a psychiatric disorder. *Med Hypotheses*. 2011; 76(6):863-870.

[39]Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, Frye RE, James SJ. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. *Transl Psychiatry*. 2012; 2:e134.

[40] James SJ, Melnyk S, Jernigan S, Cleves MA, Halsted CH, Wong DH, Cutler P, Bock K, Boris M, Bradstreet JJ, Baker SM, Gaylor DW. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. *Am J Med Genet B Neuropsychiatr Genet*. 2006;141B(8):947-956.

[41]Rossignol DA, Bradstreet JJ, Van Dyke K, Schneider C, Freedenfeld SH, O'Hara N, Cave S, Buckley JA, Mumper EA, Frye RE. Hyperbaric oxygen treatment in autism spectrum disorders. *Med Gas Res.* 2012;2(1):16.

[42]Naik US, Gangadharan C, Abbagani K, Nagalla B, Dasari N, Manna SK. A study of nuclear transcription factor-kappa B in childhood autism. *PLoS One*. 2011; 6(5):e19488.

[43] Young AM, Campbell E, Lynch S, Suckling J, PowisSJ.Aberrant NF-kappaB expression in autism spectrum condition: a mechanism for neuroinflammation. *Front Psychiatry*. 2011;2:27.

[44] Jyonouchi H, Sun S, Le H.Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. *J Neuroimmunol*. 2001;120(1-2):170-179.

[45]Wei H, Zou H, Sheikh AM, Malik M, Dobkin C, Brown WT, Li X. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. *J Neuroinflammation*. 2011;8:52.

[46] Walker SJ, Fortunato J, Gonzalez LG, Krigsman A. Identification of Unique Gene Expression Profile in Children with Regressive Autism Spectrum Disorder (ASD) and Ileocolitis. *PLoS One*. 2013;8(3):e58058.

[47] Hawkey CJ., Stem cells as treatment in inflammatory bowel disease. *Dig Dis.* 2012;30Suppl 3:134-139.

[48]Sieburg HB, Rezner BD, Muller-Sieburg CE. Predicting clonal self-renewal and extinction of hematopoietic stem cells. *Proc Natl Acad Sci U S A*. 2011;108(11):4370-4375.

[49]Kavanagh DP, Kalia N. Hematopoietic stem cell homing to injured tissues. *Stem Cell Rev*. 2011;7(3):672-682.

[50] Muraro PA, Uccelli A. Immuno-therapeutic potential of haematopoietic and mesenchymal stem cell transplantation in MS. *Results Probl Cell Differ*. 2010;51:237-257.

[51]Baldridge MT, King KY, Goodell MA. Inflammatory signals regulate hematopoietic stem cells. *Trends Immunol*. 2011;32(2):57-65.

[52]Boiko JR, BorghesiL.Hematopoiesis sculpted by pathogens: Toll-like receptors and inflammatory mediators directly activate stem cells. *Cytokine*. 2012;57(1):1-8.

[53] Smith JN, CalviLM.Current Concepts in Bone Marrow Microenvironmental Regulation of Hematopoietic Stem and Progenitor Cells. *Stem Cells*. 2013 in press.

[54] Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL. Physiological migration of hematopoietic stem and progenitor cells. *Science*. 2001;294(5548):1933-1936.

[55] Möhle R, Kanz L. Hematopoietic growth factors for hematopoietic stem cell mobilization and expansion. *Semin Hematol.* 2007;44(3):193-202.

[56] Granick JL, Simon SI, BorjessonDL.Hematopoietic stem and progenitor cells as effectors in innate immunity. *Bone Marrow Res.* 2012;2012:165107.

[57]Rosenberg M, Lutz M, Kühl C, Will R, Eckstein V, Krebs J, Katus HA, Frey N. Coculture with hematopoietic stem cells protects cardiomyocytes against apoptosis via paracrine activation of AKT. *J Transl Med.* 2012;10:115.

[58]Zhou P, Wirthlin L, McGee J, Annett G, Nolta J. Contribution of human hematopoietic stem cells to liver repair. *Semin Immunopathol*. 2009;31(3):411-419.

[59]Greish S, Abogresha N, Abdel-Hady Z, Zakaria E, Ghaly M, Hefny M. Human umbilical cord mesenchymal stem cells as treatment of adjuvant rheumatoid arthritis in a rat model. *World J Stem Cells*. 2012; 4(10):101-109.

[60] Shi Y, Su J, Roberts AI, Shou P, Rabson AB, Ren G. How mesenchymal stem cells interact with tissue immune responses. *Trends Immunol*. 2012;33(3):136-143.

[61]Blanchet MR, McNagny KM. Stem cells, inflammation and allergy. *Allergy Asthma Clin Immunol*. 2009;5(1):13.

[62] Siniscalco D, Giordano C, Galderisi U, Luongo L, de Novellis V, Rossi F, Maione S. Longlasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice. *Front Integr Neurosci*. 2011;5:79.

[63] Leventhal J, Miller J, Abecassis M, Tollerud DJ, Ildstad ST. Evolving approaches of hematopoietic stem cell-based therapies to induce tolerance to organ transplants: the long road to tolerance. *Clin Pharmacol Ther*. 2013; 93(1):36-45.

Copyright of Frontiers in Immunology is the property of Frontiers Media S.A. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.